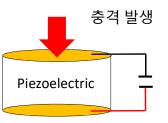


Intelligent Piezo Emergency System 압전소자를 이용한 자동신고 시스템

팀원: 김동희, 류성철, 박정인, 이승기, 이승민, 정산해, 주진혁, 황동희

지도교수 : 임 인 권 교수님

Background


- 사고 골든 타임 확보를 놓쳐 연평균 5000명의 사망자 속출
- 한적한 도로, 졸음 운전 등으로 인한 늦은 신고
- 정확한 사고 위치 파악 불가로 인한 늦은 대응

Experimental Results

- 자동 신고 시스템을 통해 골든 타임 확보
- 차량 경보음 발생으로 사고 인지
- 사고 충격 값에 따른 사고 유형 구분

Piezoelectric

• 전기 에너지 수확

• 음파 발생(가청 주파수)

교류 신호 인가

Flow chart

충돌 발생

압전 소자에 신호 발생

차량 사고 경보음 발생

충격 값, GPS신호 송신

운전자와 전화 유무

서비스센터 현장 출발 경찰, AMB, 서비스센터 현장 출발

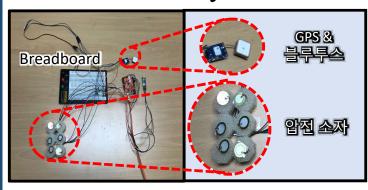
현장 조치

1st Result

압전 소자와 아두이노 연결

2nd Result

사고 강도에 따른 유형 구분


Software key function

정보 수집

- 사고발생 위치와 사고 규모, 사고자의 정보 수집
- 서비스센터 전용 어플로 사고 강도 정보 전달
- 어플을 통해 서비스센터 직원 이 상황파악 및 조치

Hardware key function

Conclusion

- 최근 나홀로 교통사고로 인해 골든 타임을 놓치는 문제를 해결하기 위해 압전 소자를 이용하여 자동신고를 할 수 있는 시스템을 제안하였다.
- 여러 가지 에너지 하베스팅 방식이 있지만, 차량 사고 시 충격(압력)을 이용해 에너지를 확보할 수 있는 압전 소자를 이용하여 제작하였다.
- 아두이노에 연결된 블루투스 모듈을 통해 서비스센터가 사고를 인지할 수 있도록 제작하였다.
- 본 캡스톤 디자인 팀은 압전 소자를 이용한 자동신고 센서를 제작하였다. 본 기술은 에너지 하베스팅 방식으로 추가적인 전력 소모가 없을 뿐만 아니라, 소자의 무게가 가벼워 실제 차량에 적용하였을 때 연비 문제가 없어 효율성을 갖추었다. 전기적, 연비적인 부분에서 효율성을 갖추었기 때문에, 실제 산업 시장에서 높은 경쟁성을 가질 기술이 될 것으로 판단된다.

